Đề cương ôn tập môn Đại số Lớp 8 - Chương III: Phương trình bậc nhất một ẩn - Trần Sĩ Tùng
Bạn đang xem tài liệu "Đề cương ôn tập môn Đại số Lớp 8 - Chương III: Phương trình bậc nhất một ẩn - Trần Sĩ Tùng", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Đề cương ôn tập môn Đại số Lớp 8 - Chương III: Phương trình bậc nhất một ẩn - Trần Sĩ Tùng

Đại số 8 Trần Sĩ Tùng CHƯƠNG III: PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN I. MỞ ĐẦU VỀ PHƯƠNG TRÌNH VẤN ĐỀ I. Chứng minh một số là nghiệm của một phương trình Phương pháp: Dùng mệnh đề sau: x0 là nghiệm của phương trình A(x) B(x) A(x0) B(x0) x0 không là nghiệm của phương trình A(x) B(x) A(x0) B(x0) Bài 1. Xét xem x0 có là nghiệm của phương trình hay không? 3 a) 3(2 x) 1 4 2x ; x 2 b) 5x 2 3x 1; x 0 0 2 c) 3x 5 5x 1; x0 2 d) 2(x 4) 3 x ; x0 2 e) 7 3x x 5 ; x0 4 f) 2(x 1) 3x 8 ; x0 2 g) 5x (x 1) 7; x0 1 h) 3x 2 2x 1; x0 3 Bài 2. Xét xem x0 có là nghiệm của phương trình hay không? 2 2 a) x 3x 7 1 2x ; x0 2 b) x 3x 10 0 ; x0 2 2 c) x 3x 4 2(x 1) ; x0 2 d) (x 1)(x 2)(x 5) 0 ; x0 1 2 2 e) 2x 3x 1 0 ; x0 1 f) 4x 3x 2x 1; x0 5 Bài 3. Tìm giá trị k sao cho phương trình có nghiệm x0 được chỉ ra: a) 2x k x –1; x0 2 b) (2x 1)(9x 2k) –5(x 2) 40 ; x0 2 c) 2(2x 1) 18 3(x 2)(2x k) ; x0 1 d) 5(k 3x)(x 1) – 4(1 2x) 80 ; x0 2 VẤN ĐỀ II. Số nghiệm của một phương trình Phương pháp: Dùng mệnh đề sau: Phương trình A(x) B(x) vô nghiệm A(x) B(x),x Phương trình A(x) B(x) có vô số nghiệm A(x) B(x),x Bài 1. Chứng tỏ các phương trình sau vô nghiệm: a) 2x 5 4(x 1) 2(x 3) b) 2x 3 2(x 3) c) x 2 1 d) x2 4x 6 0 Bài 2. Chứng tỏ rằng các phương trình sau có vô số nghiệm: a) 4(x 2) 3x x 8 b) 4(x 3) 16 4(1 4x) c) 2(x 1) 2x 2 d) x x e) (x 2)2 x2 4x 4 f) (3 x)2 x2 6x 9 Bài 3. Chứng tỏ rằng các phương trình sau có nhiều hơn một nghiệm: Trang 20 Trần Sĩ Tùng Đại số 8 a) x2 4 0 b) (x 1)(x 2) 0 c) (x 1)(2 x)(x 3) 0 d) x2 3x 0 e) x 1 3 f) 2x 1 1 VẤN ĐỀ III. Chứng minh hai phương trình tương đương Để chứng minh hai phương trình tương đương, ta có thể sử dụng một trong các cách sau: Chứng minh hai phương trình có cùng tập nghiệm. Sử dụng các phép biến đổi tương đương để biến đổi phương trình này thành phương trình kia. Hai qui tắc biến đổi phương trình: – Qui tắc chuyển vế: Trong một phương trình, ta có thể chuyển một hạng tử từ vế này sang vế kia và đổi dấu hạng tử đó. – Qui tắc nhân: Trong một phương trình, ta có thể nhân cả hai vế với cùng một số khác 0. Bài 1. Xét xem các phương trình sau có tương đương hay không? a) 3x 3 và x 1 0 b) x 3 0 và 3x 9 0 c) x 2 0 và (x 2)(x 3) 0 d) 2x 6 0 và x(x 3) 0 Bài 2. Xét xem các phương trình sau có tương đương hay không? a) x2 2 0 và x(x2 2) 0 b) x 1 x và x2 1 0 x 1 1 c) x 2 0 và 0 d) x2 x và x2 x 0 x 2 x x e) x 1 2 và (x 1)(x 3) 0 f) x 5 0 và (x 5)(x2 1) 0 Trang 21 Đại số 8 Trần Sĩ Tùng II. PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN VẤN ĐỀ I. Phương trình đưa được về dạng phương trình bậc nhất Bài 1. Giải các phương trình sau: a) 4x –10 0 b) 7 –3x 9 x c) 2x –(3 –5x) 4(x 3) d) 5 (6 x) 4(3 2x) e) 4(x 3) 7x 17 f) 5(x 3) 4 2(x 1) 7 g) 5(x 3) 4 2(x 1) 7 h) 4(3x 2) 3(x 4) 7x 20 5 13 5 ĐS: a) x b) x 1 c) x 5 d) x e) x f) x 8 2 9 11 g) x 8 h) x 8 Bài 2. Giải các phương trình sau: a) (3x 1)(x 3) (2 x)(5 3x) b) (x 5)(2x 1) (2x 3)(x 1) c) (x 1)(x 9) (x 3)(x 5) d) (3x 5)(2x 1) (6x 2)(x 3) e) (x 2)2 2(x 4) (x 4)(x 2) f) (x 1)(2x 3) 3(x 2) 2(x 1)2 13 1 1 ĐS: a) x b) x c) x 3 d) x e) x 1 f) vô nghiệm 19 5 33 Bài 3. Giải các phương trình sau: a) (3x 2)2 (3x 2)2 5x 38 b) 3(x 2)2 9(x 1) 3(x2 x 3) c) (x 3)2 (x 3)2 6x 18 d) (x –1)3 – x(x 1)2 5x(2 – x) –11(x 2) e) (x 1)(x2 x 1) 2x x(x 1)(x 1) f) (x –2)3 (3x –1)(3x 1) (x 1)3 10 ĐS: a) x 2 b) x 2 c) x 3 d) x 7 e) x 1 f) x 9 Bài 4. Giải các phương trình sau: x 5x 15x x 8x 3 3x 2 2x 1 x 3 a) 5 b) 3 6 12 4 4 2 2 4 x 1 x 1 2x 13 3(3 x) 2(5 x) 1 x c) 0 d) 2 2 15 6 8 3 2 3(5x 2) 7x x 5 3 2x 7 x e) 2 5(x 7) f) x 4 3 2 4 6 x 3 x 1 x 7 3x 0,4 1,5 2x x 0,5 g) 1 h) 11 3 9 2 3 5 30 53 ĐS: a) x b) x 0 c) x 16 d) x 11 e) x 6 f) x 7 10 28 6 g) x h) x 31 19 Bài 5. Giải các phương trình sau: Trang 22 Trần Sĩ Tùng Đại số 8 2x 1 x 2 x 7 x 3 x 1 x 5 a) b) 1 5 3 15 2 3 6 2(x 5) x 12 5(x 2) x x 4 3x 2 2x 5 7x 2 c) 11 d) x 3 2 6 3 5 10 3 6 2(x 3) x 5 13x 4 3x 1 1 4x 9 e) f) x 7 3 21 2 4 8 ĐS: a) x tuỳ ý b) x tuỳ ý c) x tuỳ ý d) vô nghiệm e) vô nghiệm f) vô nghiệm Bài 6. Giải các phương trình sau: (x 2)(x 10) (x 4)(x 10) (x 2)(x 4) (x 2)2 (x 2)2 a) b) 2(2x 1) 25 3 12 4 8 8 (2x 3)(2x 3) (x 4)2 (x 2)2 7x2 14x 5 (2x 1)2 (x 1)2 c) d) 8 6 3 15 5 3 (7x 1)(x 2) 2 (x 2)2 (x 1)(x 3) e) 10 5 5 2 123 1 19 ĐS: a) x 8 b) x 9 c) x d) x e) x 64 12 15 Bài 7. Giải các phương trình sau: (Biến đổi đặc biệt) x 1 x 3 x 5 x 7 a) (HD: Cộng thêm 1 vào các hạng tử) 35 33 31 29 x 10 x 8 x 6 x 4 x 2 b) (HD: Trừ đi 1 vào các hạng tử) 1994 1996 1998 2000 2002 x 2002 x 2000 x 1998 x 1996 x 1994 2 4 6 8 10 x 1991 x 1993 x 1995 x 1997 x 1999 c) 9 7 5 3 1 x 9 x 7 x 5 x 3 x 1 (HD: Trừ đi 1 vào các hạng tử) 1991 1993 1995 1997 1999 x 85 x 74 x 67 x 64 d) 10 (Chú ý: 10 1 2 3 4 ) 15 13 11 9 x 1 2x 13 3x 15 4x 27 e) (HD: Thêm hoặc bớt 1 vào các hạng tử) 13 15 27 29 ĐS: a) x 36 b) x 2004 c) x 2000 d) x 100 e) x 14 . Bài 8. Giải các phương trình sau: (Biến đổi đặc biệt) x 1 x 3 x 5 x 7 x 29 x 27 x 17 x 15 a) b) 65 63 61 59 31 33 43 45 x 6 x 8 x 10 x 12 1909 x 1907 x 1905 x 1903 x c) d) 4 0 1999 1997 1995 1993 91 93 95 91 x 29 x 27 x 25 x 23 x 21 x 19 e) 1970 1972 1974 1976 1978 1980 x 1970 x 1972 x 1974 x 1976 x 1978 x 1980 29 27 25 23 21 19 ĐS: a) x 66 b) x 60 c) x 2005 d) x 2000 e) x 1999 . Trang 23 Đại số 8 Trần Sĩ Tùng VẤN ĐỀ II. Phương trình tích Để giải phương trình tích, ta áp dụng công thức: A(x) 0 A(x).B(x) A(x) 0 hoặc B(x) 0 B(x) 0 Ta giải hai phương trình A(x) 0 và B(x) 0, rồi lấy tất cả các nghiệm của chúng. Bài 1. Giải các phương trình sau: a) (5x 4)(4x 6) 0 b) (3,5x 7)(2,1x 6,3) 0 c) (4x 10)(24 5x) 0 d) (x 3)(2x 1) 0 e) (5x 10)(8 2x) 0 f) (9 3x)(15 3x) 0 4 3 5 5 1 ĐS: a) x ; x b) x 2; x 3 c) x ; x d) x 3; x 5 2 2 24 2 e) x 2; x 4 f) x 3; x 5 Bài 2. Giải các phương trình sau: a) (2x 1)(x2 2) 0 b) (x2 4)(7x 3) 0 c) (x2 x 1)(6 2x) 0 d) (8x 4)(x2 2x 2) 0 1 3 1 ĐS: a) x b) x c) x 3 d) x 2 7 2 Bài 3. Giải các phương trình sau: a) (x 5)(3 2x)(3x 4) 0 b) (2x 1)(3x 2)(5 x) 0 c) (2x 1)(x 3)(x 7) 0 d) (3 2x)(6x 4)(5 8x) 0 e) (x 1)(x 3)(x 5)(x 6) 0 f) (2x 1)(3x 2)(5x 8)(2x 1) 0 3 4 1 2 1 3 2 5 ĐS: a) S 5; ; b) S ; ; 5 c) S ;3; 7 d) S ; ; 2 3 2 3 2 2 3 8 1 2 8 1 e) S 1; 3; 5;6 f) S ; ; ; 2 3 5 2 Bài 4. Giải các phương trình sau: a) (x 2)(3x 5) (2x 4)(x 1) b) (2x 5)(x 4) (x 5)(4 x) c) 9x2 1 (3x 1)(2x 3) d) 2(9x2 6x 1) (3x 1)(x 2) e) 27x2(x 3) 12(x2 3x) 0 f) 16x2 8x 1 4(x 3)(4x 1) 1 1 4 ĐS: a) x 2; x 3 b) x 0; x 4 c) x ; x 2 d) x ; x 3 3 5 4 1 e) x 0; x 3; x f) x 9 4 Bài 5. Giải các phương trình sau: a) (2x 1)2 49 b) (5x 3)2 (4x 7)2 0 Trang 24 Trần Sĩ Tùng Đại số 8 c) (2x 7)2 9(x 2)2 d) (x 2)2 9(x2 4x 4) e) 4(2x 7)2 9(x 3)2 0 f) (5x2 2x 10)2 (3x2 10x 8)2 10 13 ĐS: a) x 4; x 3 b) x 4; x c) x 1; x d) x 1; x 4 9 5 23 1 e) x 5; x f) x 3; x 7 2 Bài 6. Giải các phương trình sau: a) (9x2 4)(x 1) (3x 2)(x2 1) b) (x 1)2 1 x2 (1 x)(x 3) c) (x2 1)(x 2)(x 3) (x 1)(x2 4)(x 5) d) x4 x3 x 1 0 e) x3 7x 6 0 f) x4 4x3 12x 9 0 g) x5 5x3 4x 0 h) x4 4x3 3x2 4x 4 0 2 1 7 ĐS: a) x ; x 1; x b) x 1; x 1 c) x 1; x 2; x 3 2 5 d) x 1 e) x 1; x 2; x 3 f) x 1; x 3 g) x 0; x 1; x 1; x 2; x 2 h) x 1; x 1; x 2 Bài 7. Giải các phương trình sau: (Đặt ẩn phụ) a) (x2 x)2 4(x2 x) 12 0 b) (x2 2x 3)2 9(x2 2x 3) 18 0 c) (x 2)(x 2)(x2 10) 72 d) x(x 1)(x2 x 1) 42 e) (x 1)(x 3)(x 5)(x 7) 297 0 f) x4 2x2 144x 1295 0 ĐS: a) x 1; x 2 b) x 0; x 1; x 2; x 3 c) x 4; x 4 d) x 2; x 3 e) x 4; x 8 f) x 5; x 7 VẤN ĐỀ III. Phương trình chứa ẩn ở mẫu Các bước giải phương trình chứa ẩn ở mẫu: Bước 1: Tìm điều kiện xác định của phương trình. Bước 2: Qui đồng mẫu hai vế của phương trình, rồi khử mẫu. Bước 3: Giải phương trình vừa nhân được. Bước 4: (Kết luận) Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thoả mãn điều kiện xác định chính là các nghiệm của phương trình đã cho. Bài 1. Giải các phương trình sau: 4x 3 29 2x 1 4x 5 x a) b) 2 c) 2 x 5 3 5 3x x 1 x 1 7 3 2x 5 x 12x 1 10x 4 20x 17 d) e) 0 f) x 2 x 5 2x x 5 11x 4 9 18 136 11 41 ĐS: a) x b) x c) x 3 d) x 17 8 4 5 e) x f) x 2 3 Trang 25 Đại số 8 Trần Sĩ Tùng Bài 2. Giải các phương trình sau: 11 9 2 14 2 x 3 5 a) b) x x 1 x 4 3x 12 x 4 8 2x 6 12 1 3x 1 3x x 5 x 25 x 5 c) d) 1 9x2 1 3x 1 3x x2 5x 2x2 50 2x2 10x x 1 x 1 16 x 1 x 1 x 1 e) f) 1 (x 2) x 1 x 1 x2 1 x 1 x 1 x 1 ĐS: a) x 44 b) x 5 c) x 1 d) vô nghiệm e) x 4 f) x 3 Bài 3. Giải các phương trình sau: 6x 1 5 3 2 x 1 x 4 a) b) 0 x2 7x 10 x 2 x 5 x2 4 x(x 2) x(x 2) 1 1 x (x 1)2 1 6 5 c) d) 3 x x 1 x 3 x2 2x 3 x 2 x 3 6 x2 x 2 2x2 16 5 x 1 x 1 2(x 2)2 e) f) x 2 x3 8 x2 2x 4 x2 x 1 x2 x 1 x6 1 9 3 ĐS: a) x b) vô nghiệm c) x d) x 4 4 5 5 e) vô nghiệm f) x 4 Bài 4. Giải các phương trình sau: 8 11 9 10 x x x x a) b) x 8 x 11 x 9 x 10 x 3 x 5 x 4 x 6 4 3 1 2 3 6 c) 1 0 d) x2 3x 2 2x2 6x 1 x 1 x 2 x 3 x 6 19 9 6 12 ĐS: a) x 0; x b) x 0; x c) x 0; x 3 d) x ; x 2 2 5 5 Bài 5. Giải các phương trình sau: a) b) ĐS: a) Trang 26 Trần Sĩ Tùng Đại số 8 III. GIẢI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH Các bước giải toán bằng cách lập phương trình: Bước 1: Lập phương trình – Chọn ẩn số và đặt điều kiện thích hợp cho ẩn số. – Biểu diễn các đại lượng chưa biết khác theo ẩn và các đại lượng đã biết. – Lập phương trình biểu thị mối quan hệ giữa các đại lượng. Bước 2: Giải phương trình Bước 3: Trả lời Kiểm tra xem trong các nghiệm của phương trình, nghiệm nào thoả mãn điều kiện của ẩn, nghiệm nào không, rồi kết luận. VẤN ĐỀ I. Loại so sánh Trong đầu bài thường có các từ: – nhiều hơn, thêm, đắt hơn, chậm hơn, ...: tương ứng với phép toán cộng. – ít hơn, bớt, rẻ hơn, nhanh hơn, ...: tương ứng với phép toán trừ. – gấp nhiều lần: tương ứng với phép toán nhân. – kém nhiều lần: tương ứng với phép toán chia. Bài 1. Tìm hai số nguyên liên tiếp, biết rằng 2 lần số nhỏ cộng 3 lần số lớn bằng –87. ĐS: 18; 17 . Bài 2. Một phân số có tử số nhỏ hơn mẫu số là 8. Nếu thêm 2 đơn vị vào tử số và bớt mẫu số đi 3 3 đơn vị thì ta được phân số bằng . Tìm phân số đã cho. 4 7 ĐS: 15 Bài 3. Tổng của 4 số là 45. Nếu lấy số thứ nhất cộng thêm 2, số thứ hai trừ đi 2, số thứ ba nhân với 2, số thứ tư chi cho 2 thì bốn kết quả đó bằng nhau. Tìm 4 số ban đầu. ĐS: 8; 12; 5; 20. Bài 4. Thương của hai số là 3. Nếu tăng số bị chia lên 10 và giảm số chia đi một nửa thì hiệu của hai số mới là 30. Tìm hai số đó. ĐS: 24; 8. 1 Bài 5. Một đội công nhân sửa một đoạn đường trong 3 ngày. Ngày thứ nhất đội sửa được đoạn 3 4 đường, ngày thứ hai đội sửa được một đoạn đường bằng đoạn được làm được trong ngày 3 thứ nhất, ngày thứ ba đội sửa 80m còn lại. Tính chiều dài đoạn đường mà đội phải sửa. ĐS: 360m. Bài 6. Hai phân xưởng có tổng cộng 220 công nhân. Sau khi chuyển 10 công nhân ở phân xưởng 1 Trang 27 Đại số 8 Trần Sĩ Tùng 2 4 sang phân xưởng 2 thì số công nhân phân xưởng 1 bằng số công nhân phân xưởng 2. 3 5 Tính số công nhân của mỗi phân xưởng lúc đầu. ĐS: Phân xưởng 1 có 120 công nhân, phân xưởng 2 có 90 công nhân. Bài 7. Hai bể nước chứa 800 lít nước và 1300 lít nước. Người ta tháo ra cùng một lúc ở bể thứ nhất 2 15 lít/phút, bể thứ hai 25 lít/phút. Hỏi sau bao lâu số nước ở bể thứ nhất bằng số nước ở bể 3 thứ hai? ĐS: 40 phút. Bài 8. Trước đây 5 năm, tuổi Dung bằng nửa tuổi của Dung sau 4 năm nữa. Tính tuổi của Dung hiện nay. ĐS: 14 tuổi. Bài 9. Tìm một số có chữ số hàng đơn vị là 2, biết rằng nếu xoá chữ số 2 đó thì số ấy giảm đi 200. ĐS: 222. Bài 10. Gia đình Đào có 4 người: bố, mẹ, bé Mai và Đào. Tuổi trung bình của cả nhà là 23. Nếu 9 viết thêm chữ số 0 vào bên phải tuổi bé Mai thì được tuổi của bố, tuổi của mẹ bằng tuổi 10 bố và gấp 3 lần tuổi của Đào. Tìm tuổi của mỗi người trong gia đình Đào. ĐS: Tuổi của bố, mẹ, bé Mai và Đào lần lượt là: 40, 36, 4, 12. Bài 11. Nhân ngày 1 tháng 6, một phân đội thiếu niên được tặng một số kẹo. số kẹo này được chia hết và chia đều cho mọi đội viên trong phân đội. Để đảm bảo nguyên tắc chia ấy, đội trưởng đã đề xuất cách chia như sau: 1 – Bạn thứ nhất nhận một viên kẹo và được lấy thêm số kẹo còn lại. 11 1 – Sau khi bạn thứ nhất lấy phần của mình, bạn thứ hai nhận 2 viên kẹo và được lấy thêm 11 số kẹo còn lại. 1 Cứ như thế đến bạn cuối cùng, thứ n, nhận n viên kẹo và được lấy thêm số kẹo còn lại. 11 Hỏi phân đội đó có bao nhiêu đội viên và mỗi đội viên nhận bao nhiêu viên kẹo. ĐS: 10 đội viên, mỗi đội viện nhận 10 viên kẹo. Bài 12. Một người bán số sầu riêng thu hoạch được như sau: 1 – Lần thứ nhất bán 9 trái và số sầu riêng còn lại. 6 1 – Lần thứ hai bán 18 trái và số sầu riêng còn lại mới. 6 1 – Lần thứ ba bá 27 trái và số sầu riêng còn lại mới, v.v... 6 Với cách đó thì bán lần sau cùng là vừa hết và số sầu riêng bán mỗi lần đều bằng nhau. Hỏi người đó đã bán bao nhiêu lần và số sầu riêng thu hoạch được là bao nhiêu trái? ĐS: 225 trái, bán 5 lần. Bài 13. Ba lớp A, B, C góp sách tặng các bạn học sinh vùng khó khăn, tất cả được 358 cuốn. Tỉ số 6 7 số cuốn sách của lớp A so với lớp B là . Tỉ số số cuốn sách của lớp A so với lớp C là . 11 10 Hỏi mỗi lớp góp được bao nhiêu cuốn sách? ĐS: Lớp A: 84 cuốn; lớp B: 154 cuốn; lớp C: 120 cuốn. Bài 14. Dân số tỉnh A hiện nay là 612060 người. Hàng năm dân số tỉnh này tăng 1%. Hỏi hai năm trước đây dân số của tỉnh A là bao nhiêu? ĐS: 600000 người. Bài 15. Trong một trường học, vào đầu năm học số học sinh nam và nữ bằng nhau. Nhưng trong Trang 28 Trần Sĩ Tùng Đại số 8 học kì 1, trường nhận thêm 15 học sinh nữ và 5 học sinh nam nên số học sinh nữ chiếm 51% số học sinh của trường. Hỏi cuối học kì 1, trường có bao nhiêu học sinh nam, học sinh nữ? ĐS: 245 nam, 255 nữ. VẤN ĐỀ II. Loại tìm số gồm hai, ba chữ số Số có hai chữ số có dạng: xy 10x y . Điều kiện: x,y N,0 x 9,0 y 9 . Số có ba chữ số có dạng: xyz 100x 10y z . Điều kiện: x,y,z N,0 x 9,0 y,z 9 . Bài 1. Tìm một số tự nhiên có hai chữ số, biết rằng: – Tổng hai chữ số là 12 – Nếu đổi chỗ hai chữ số thì được một số mới lớn hơn số đó là 36. ĐS: 48 Bài 2. Tìm một số tự nhiên có hai chữ số, biết rằng: – Tổng hai chữ số là 10 – Nếu viết số đó theo thứ tự ngược lại thì được một số mới nhỏ hơn số đó là 36. ĐS: 73 Bài 3. Một số tự nhiên có 5 chữ số. Nếu thêm chữ số 1 vào bên phải hay bên trái số đó ta được một số có 6 chữ số. Biết rằng nếu viết thêm vào bên phải số đó thì được một số lớn gấp ba lần số nhận được khi ta viết thêm vào bên trái số đó. Tìm số đó. ĐS: 42857. Bài 4. Một số có hai chữ số, trong đó chữ số hàng chục gấp 3 lần chữ số hàng đơn vị. Nếu đổi chỗ hai chữ số ta được một số có hai chữ số nhỏ hơn số ban đầu 18 đơn vị. Tìm số đó. ĐS: 31. Bài 5. Một số tự nhiên có hai chữ số có tổng các chữ số bằng 7. Nếu thêm chữ số 0 vào giữa hai chữ số ta được một số có 3 chữ số lớn hơn số đã cho là 180. Tìm số đó. ĐS: 25. Bài 6. ĐS: VẤN ĐỀ III. Loại làm chung - làm riêng một việc Khi công việc không được đo bằng số lượng cụ thể, ta coi toàn bộ công việc là một đơn vị công việc, biểu thị bởi số 1. Năng suất làm việc là phần việc làm được trong một đơn vị thời gian. Gọi A là khối lượng công việc, n là năng suất, t là thời gian làm việc. Ta có: A nt . Trang 29
File đính kèm:
de_cuong_on_tap_mon_dai_so_lop_8_chuong_iii_phuong_trinh_bac.doc