Đề cương ôn tập học kì I môn Toán Lớp 12 - Từ câu 1 đến 45 - Năm học 2020-2021 - Trường THPT Yên Hòa (Có đáp án)
Bạn đang xem 20 trang mẫu của tài liệu "Đề cương ôn tập học kì I môn Toán Lớp 12 - Từ câu 1 đến 45 - Năm học 2020-2021 - Trường THPT Yên Hòa (Có đáp án)", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Đề cương ôn tập học kì I môn Toán Lớp 12 - Từ câu 1 đến 45 - Năm học 2020-2021 - Trường THPT Yên Hòa (Có đáp án)

SP ĐỢT 4 TỔ 16 ĐỀ ÔN TẬP HKI LỚP 12 THPT YÊN HÒA 2020-2021 ĐỀ CƯƠNG ÔN TẬP CÂU 1-CÂU 45 HKI LỚP 12 THPT YÊN HÒA HN 2020-2021 TỔ 16 Câu 1: Cho hàm số y f x có đạo hàm trên a;b . Phát biểu nào sau đây sai: A. Hàm số y f x nghịch biến trên a;b khi và chỉ khi f ' x 0;x a;b và f ' x 0 tại hữu hạn giá trị x a;b . B. Hàm số y f x nghịch biến trên a;b khi và chỉ khi x1; x2 a;b : x1 x2 f x1 f x2 . C. Hàm số y f x nghịch biến trên a;b khi và chỉ khi f ' x 0;x a;b . D. Nếu f ' x 0;x a;b thì hàm số y f x nghịch biến trên a;b . Câu 2: Cho hàm số y f x có đạo hàm trên khoảng a;b . Xét các mệnh đề sau: I. Nếu hàm số y f x đồng biến trên khoảng a;b thì f ' x 0,x a;b . II. Nếu f ' x 0,x a;b thì hàm số y f x nghịch biến trên khoảng a;b . III. Nếu hàm số y f x liên tục trên a;b và f ' x 0,x a;b thì hàm y f x đồng biến trên a;b . Số mệnh đề đúng là A. 3. B. 0. C. 2. D. 1. Câu 3: Hàm số y 2x4 1 đồng biến trên khoảng nào sau đây? 1 1 A. 0; . B. ; . C. ; . D. ;0 . 2 2 Câu 4: Các khoảng nghịch biến của hàm số y x4 2x2 4 A. 1; 0 và 1; . B. ;1 và 1; . C. 1; 0 và 0;1 . D. ;1 và 0;1 . x 1 Câu 5: Cho hàm số y . Mệnh đề nào sau đây là mệnh đề đúng? x 2 A. Hàm số đồng biến trên ¡ . B. Hàm số nghịch biến trên từng khoảng xác định. C. Hàm số đồng biến trên ¡ \ 2 . D. Hàm số đồng biến trên từng khoảng của miền xác định. Câu 6: Cho hàm số y 3x x2 hàm số đồng biến trên khoảng nào sau đây? æ 3ö æ3 ö æ 3ö A. ç0; ÷. B. (0;3). C. ç ;3÷. D. ç- ¥ ; ÷. èç 2ø÷ èç2 ø÷ èç 2ø÷ Trang 1 SP ĐỢT 4 TỔ 16 ĐỀ ÔN TẬP HKI LỚP 12 THPT YÊN HÒA 2020-2021 Câu 7: Cho hàm số f x có đạo hàm f x x 1 2 x 1 3 2 x . Hàm số f x đồng biến trên những khoảng nào trong những khoảng dưới đây? A. 1;1 . B. 1;2 . C. ; 1 . D. 2; . Câu 8: Cho hàm số y f x xác định trên khoảng 0;3 có tính chất f x 0,x 0;3 ; f x 0,x 1;2 . Tìm khẳng định đúng trong các khẳng định sau: A. Hàm số f x đồng biến trên khoảng 0;2 . B. Hàm số f x không đổi trên khoảng 1;2 . C. Hàm số f x đồng biến trên khoảng 1;3 . D. Hàm số f x đồng biến trên khoảng 0;3 . Câu 9: Cho hàm số y f x có bảng biến thiên như hình vẽ Mệnh đề nào sau đây đúng? A. Hàm số đồng biến trên khoảng 1;3 . B. Hàm số đồng biến trên khoảng ;2 . C. Hàm số nghịch biến trên khoảng 2;1 . D. Hàm số nghịch biến trên khoảng 1;2 . Câu 10: Cho hàm số y f x xác định trên ¡ \ 2 và có bảng biến thiên như hình vẽ. Mệnh đề nào sau đây là đúng? A. f x nghịch biến trên từng khoảng ;2 và 2; . B. f x đồng biến trên từng khoảng ;2 và 2; . C. f x đồng biến trên ¡ . D. f x nghịch biến trên ¡ . Câu 11: Cho hàm số y f (x) có đồ thị như hình vẽ. Hàm số đã cho đồng biến trên khoảng nào sau đây? Trang 2 SP ĐỢT 4 TỔ 16 ĐỀ ÔN TẬP HKI LỚP 12 THPT YÊN HÒA 2020-2021 A. ;1 . B. 1;3 . C. 1; . D. 0;1 . Câu 12: Đường cong trong hình vẽ là đồ thị của một hàm số có dạng y ax3 bx2 cx d a 0 . Hàm số đó nghịch biến trên khoảng nào dưới đây? A. 1; . B. ;1 . C. 1; . D. 1;1 . Câu 13: Tìm m để hàm số y x3 mx nghịch biến trên ¡ . A. m 0 . B. m 0 . C. m 0 . D. m 0 . 1 Câu 14: Tìm tất cả các giá trị thực của tham số m để hàm số y x3 2mx2 4x 5 đồng biến trên ¡ . 3 A. 1 m 1. B. 1 m 1 . C. 0 m 1. D. 0 m 1. Câu 15: Tìm tất cả các giá trị của tham số m để hàm số y cos 2x mx đồng biến trên ¡ . A. m 2 . B. m 2 . C. 2 m 2 . D. m 2 . 2x m Câu 16: Tìm tất cả các giá trị thực của tham số m để hàm số y nghịch biến trên từng khoảng xác x 1 định của nó. A. m 2 . B. m 2 . C. m 2 . D. m 2 . Câu 17: Cho hàm số y x3 3x2 m 1 x 4m 1 , m là tham số. Tập hợp tất cả các giá trị thực của tham số m để hàm số nghịch biến trên khoảng 1;1 là 1 A. ;2 . B. ; 10. C. : . D. ; 10 . 4 Câu 18: Tập hợp tất cả các giá trị của tham số m để hàm số y x3 6x2 4 m x 5 đồng biến trên khoảng ;3 là A. ; 8 . B. ; 8. C. ;5. D. 5; . 1 3 Câu 19: Có bao nhiêu giá trị nguyên âm của m để hàm số y x4 mx đồng biến trên 0; . 4 2x A. 2 . B. 1. C. 3 . D. 0 . mx 9 Câu 20: Có bao nhiêu giá trị nguyên của m để hàm số y nghịch biến trên khoảng 1; ? x m A. 5 . B. 3 . C. 2 . D. 4 . Câu 21: Cho hàm số y f x có đạo hàm f x trên khoảng ; . Đồ thị hàm số y f x như hình vẽ. Hàm số y f x nghịch biến trên khoảng nào trong các khoảng sau? 5 A. ; . 2 B. 3; . C. 0;3 . D. ;0 . Trang 3 SP ĐỢT 4 TỔ 16 ĐỀ ÔN TẬP HKI LỚP 12 THPT YÊN HÒA 2020-2021 Câu 22: Cho hàm số y f (x) có đồ thị như hình vẽ Hàm số y f 2 x2 đồng biến trên khoảng nào dưới đây A. ;0 . B. 0;1 . C. 1;2 . D. 0; . x 1 2 Câu 23: Cho hàm số y f x có đồ thị hàm số y f x như hình vẽ. Hàm số g x f x đồng 2 biến trên khoảng nào dưới đây? æ 3ö A. (- 3;1). B. (- 2;0). C. (1;3). D. ç- 1; ÷. èç 2ø÷ Câu 24: Phát biểu nào sau đây là sai? A. Hàm số f x đạt cực trị tại x0 khi và chỉ khi x0 là nghiệm của phương trình f x 0. B. Nếu f x0 0 và f x0 0 thì hàm số đạt cực tiểu tại x0 . C. Nếu f x đổi dấu khi x đi qua x0 và f x liên tục tại x0 thì f x đạt cực trị tại x0 . D. Nếu f x0 0 và f x0 0 thì hàm số đạt cực đại tại x0 . Câu 25: Cho hàm số y f x có đạo hàm cấp 2 trên khoảng K và x0 K . Mệnh đề nào sau đây đúng? A. Nếu x0 là điểm cực đại của hàm số y f x thì f x 0 . B. Nếu f x0 0 thì x0 là điểm cực trị của hàm số y f x . C. Nếu x0 là điểm cực trị của hàm số y f x thì f x 0. D. Nếu x0 là điểm cực đại của hàm số y f x thì f x 0 . Câu 26: Cho hàm số y f x . Khẳng định nào sau đây đúng? A. Hàm số y f x đạt cực trị tại x thì f x 0 hoặc f x 0 . 0 0 0 B. Nếu hàm số đạt cực trị tại x thì hàm số không có đạo hàm tại x hoặc f x 0 . 0 0 0 C. Nếu hàm số đạt cực trị tại x thì f x 0 . 0 0 D. Hàm số y f x đạt cực trị tại x thì nó không có đạo hàm tại x . 0 0 Câu 27: Hàm số y x4 2x2 1 có bao nhiêu điểm cực trị? A. 2 . B. 3 . C. 1. D. 0 . 1 2x Câu 28: Hàm số y có bao nhiêu điểm cực trị? x 2 A. 3 . B. 0 . C. 2 . D. 1. 2 Câu 29: Cho hàm số y f x có đạo hàm f ' x x2 x 1 2x 1 . Số điểm cực trị của hàm số đã cho là A. 1. B. 2 . C. 3 . D. 0 . Trang 4 SP ĐỢT 4 TỔ 16 ĐỀ ÔN TẬP HKI LỚP 12 THPT YÊN HÒA 2020-2021 Câu 30: Giá trị cực tiểu của hàm số y x4 2x2 3 bằng A. 4 . B. 3 . C. 6 . D. 0 . Câu 31: Cho hàm số y x2 2x . Mệnh đề nào dưới đây đúng? A. Hàm số đạt cực đại tại x 2 . B. Hàm số không có cực trị. C. Hàm số đạt cực tiểu tại x 0 . D. Hàm số có 2 điểm cực trị. Câu 32: Hàm số y x4 2x2 3 có bao nhiêu điểm cực trị? A. 6. B. 5. C. 3. D. 4. Câu 33: Khoảng cách giữa hai điểm cực trị của hàm số y x3 3x2 bằng A. 2 2 . B. 1. C. 3 . D. 2 5 . Câu 34: Cho điểm I 2;2 và A, B là hai điểm cực trị của đồ thị hàm số y x3 3x2 4 . Tính diện tích S của tam giác IAB . A. S 20 . B. S 10 . C. S 10 . D. S 20 . Câu 35: Cho hàm số y f x có bảng biến thiên như hình vẽ Điểm cực tiểu của hàm số đã cho là A. x 3. B. x 0 . C. x 1. D. x 2. Câu 36: Cho hàm số y f x liên tục trên ¡ và có bảng biến thiên như sau: Mệnh đề nào sau đây là đúng? A. Hàm số y f x đạt cực tiểu tại x 1. B. Hàm số y f x đạt cực đại tại x 2. C. Hàm số y f x đạt cực đại tại x 1. D. Hàm số y f x không đạt cực trị tại x 2. Câu 37: Cho hàm số y ax4 bx2 c a, b, c ¡ có đồ thị như hình vẽ:Số điểm cực trị của hàm số đã cho là A. 2 . B. 1. Trang 5 SP ĐỢT 4 TỔ 16 ĐỀ ÔN TẬP HKI LỚP 12 THPT YÊN HÒA 2020-2021 C. 0 . D. 3 . Câu 38: Cho hàm số y f x liên tục trên ¡ và có đồ thị như hình vẽ. Hàm số y f x có bao nhiêu điểm cực trị? A. 4 . B. 5 . C. 2 . D. 3 . y Câu 39: Cho hàm số y f x có đồ thị như hình vẽ 2 Hàm số đã cho đạt cực đại tại điểm nào dưới đây? A. x 1. -2 1 -1 O 2 x B. x 2 . C. x 1. D. x 2. -2 Câu 40: Tìm tất cả các giá trị thực của tham số m để hàm số 3 2 2 y mx m 1 x 2m x 1 có cực trị. 3 1 1 m 1 m 1 1 A. 5 . B. m 1. C. 5 . D. m 1. 5 5 m 1 m 0 1 Câu 41: Tìm tất cả các giá trị của tham số m để hàm số y x3 mx2 m 2 x 2018 không có cực trị. 3 A. m 1 hoặc m 2 . B. m 1. C. m 2 . D. 1 m 2 . Câu 42: Có tất cả bao nhiêu giá trị nguyên của m trên miền 10;10 để hàm số y x4 2 2m 1 x2 7 có 3 điểm cực trị. A. 20 . B. 10. C. Vô số. D. 11. Câu 43: Tìm tất cả các giá trị của tham số m để hàm số y x4 2 m 1 x2 3 m có đúng một điểm cực trị. A. m 1. B. m 1. C. m 1. D. m 1. Câu 44: Tập hợp tất cả các giá trị của tham số m để hàm số y x3 mx2 2m 3 x 3 đạt cực đại tại điểm x 1 là A. ;3 . B. ;3 . C. 3; . D. 3; . Câu 45: Cho hàm số y x3 ax2 bx c . Biết rằng đồ thị hàm số đi qua điểm A 0; 1 và có điểm cực đại là M 2;3 . Tính Q a 2b c . A. Q 0 . B. Q 4 . C. Q 1. D. Q 2 . Trang 6 SP ĐỢT 4 TỔ 16 ĐỀ ÔN TẬP HKI LỚP 12 THPT YÊN HÒA 2020-2021 GIẢI CHI TIẾT CÂU 1-CÂU 45 ĐỀ CƯƠNG ÔN TẬP HKI LỚP 12 THPT YÊN HÒA HN 2020-2021 TỔ 16 BẢNG ĐÁP ÁN 1.C 2.C 3.A 4.A 5.D 6.A 7.B 8.B 9.D 10.A 11.D 12.C 13.A 14.A 15.B 16.B 17.B 18.B 19.A 20.D 21.C 22.B 23.A 24.A 25.C 26.B 27.B 28.B 29.A 30.A 31.B 32.B 33.D 34.C 35.B 36.B 37.D 38.B 39.A 40.D 41.D 42.D 43.B 44.C 45.D Câu 1: [2D1-1.5-1] Cho hàm số y f x có đạo hàm trên a;b . Phát biểu nào sau đây sai: A. Hàm số y f x nghịch biến trên a;b khi và chỉ khi f ' x 0;x a;b và f ' x 0 tại hữu hạn giá trị x a;b . B. Hàm số y f x nghịch biến trên a;b khi và chỉ khi x1; x2 a;b : x1 x2 f x1 f x2 . C. Hàm số y f x nghịch biến trên a;b khi và chỉ khi f ' x 0;x a;b . D. Nếu f ' x 0;x a;b thì hàm số y f x nghịch biến trên a;b . Lời giải FB tác giả: Nguyễn Huệ Dễ thấy khẳng định C sai vì hàm số có thể là hàm hằng số. Câu 2: [2D1-1.5-1] Cho hàm số y f x có đạo hàm trên khoảng a;b . Xét các mệnh đề sau: I. Nếu hàm số y f x đồng biến trên khoảng a;b thì f ' x 0,x a;b . II. Nếu f ' x 0,x a;b thì hàm số y f x nghịch biến trên khoảng a;b . III. Nếu hàm số y f x liên tục trên a;b và f ' x 0,x a;b thì hàm y f x đồng biến trên a;b . Số mệnh đề đúng là A. 3. B. 0. C. 2. D. 1. Lời giải FB tác giả: Vũ Chiến Ta thấy mệnh đề II, III đúng. Mệnh đề I sai, ví dụ như y x3 đồng biến trên ¡ nhưng y ' 3x2 0,x ¡ . Câu 3: [2D1-1.1-1] Hàm số y 2x4 1 đồng biến trên khoảng nào sau đây? Trang 7 SP ĐỢT 4 TỔ 16 ĐỀ ÔN TẬP HKI LỚP 12 THPT YÊN HÒA 2020-2021 1 1 A. 0; . B. ; . C. ; . D. ;0 . 2 2 Lời giải FB tác giả: Minh Nguyễn Quang Ta có y 8x3 . Suy ra y 0 8x3 0 x3 0 x 0 . Vậy hàm số đã cho đồng biến trên khoảng 0; . Câu 4: [2D1-1.1-1] Các khoảng nghịch biến của hàm số y x4 2x2 4 A. 1; 0 và 1; . B. ;1 và 1; . C. 1; 0 và 0;1 . D. ;1 và 0;1 . Lời giải FB tác giả: Nguyễn Loan TXĐ: D ¡ . 3 2 x 0 Có y 4x 4x 4x 1 x y 0 . x 1 BBT Từ bảng biến thiên ta có các khoảng nghịch biến của hàm số là 1; 0 và 1; . x 1 Câu 5: [2D1-1.1-1] Cho hàm số y . Mệnh đề nào sau đây là mệnh đề đúng? x 2 A. Hàm số đồng biến trên ¡ . B. Hàm số nghịch biến trên từng khoảng xác định. C. Hàm số đồng biến trên ¡ \ 2 . D. Hàm số đồng biến trên từng khoảng của miền xác định. Lời giải FB tác giả: Cuong tran duy TXĐ: D ¡ \ 2 . 3 y 0,x D . x 2 2 Vậy hàm số đồng biến trên từng khoảng của miền xác định. Câu 6: [2D1-1.1-2] Cho hàm số y 3x x2 hàm số đồng biến trên khoảng nào sau đây? æ 3ö æ3 ö æ 3ö A. ç0; ÷. B. (0;3). C. ç ;3÷. D. ç- ¥ ; ÷. èç 2ø÷ èç2 ø÷ èç 2ø÷ Trang 8 SP ĐỢT 4 TỔ 16 ĐỀ ÔN TẬP HKI LỚP 12 THPT YÊN HÒA 2020-2021 Lời giải FB tác giả: Thái Hà Đào Tập xác định của hàm số là D = [0;3]. 3- 2x Ta có y¢= suy ra 2 3x- x2 ïì 3 ïì 3- 2x ³ 0 ï x £ 3 y¢³ 0 Û íï Û í 2 Û 0 < x £ . îï 0 < x < 3 ï 2 îï 0 < x < 3 æ 3ö Do vậy hàm số đồng biến trên khoảng ç0; ÷. èç 2ø÷ Câu 7: [2D1-1.1-2] Cho hàm số f x có đạo hàm f x x 1 2 x 1 3 2 x . Hàm số f x đồng biến trên những khoảng nào trong những khoảng dưới đây? A. 1;1 . B. 1;2 . C. ; 1 . D. 2; . Lời giải FB tác giả: Nguyễn Thu Trang Ta có bảng xét dấu Vậy hàm số đồng biến trên khoảng 1;2 . Câu 8: [2D1-1.1-2] Cho hàm số y f x xác định trên khoảng 0;3 có tính chất f x 0,x 0;3 ; f x 0,x 1;2 . Tìm khẳng định đúng trong các khẳng định sau: A. Hàm số f x đồng biến trên khoảng 0;2 . B. Hàm số f x không đổi trên khoảng 1;2 . C. Hàm số f x đồng biến trên khoảng 1;3 . D. Hàm số f x đồng biến trên khoảng 0;3 . Lời giải FB tác giả: Loan Minh Hàm số y f x có f x 0,x 1;2 nên f x không đổi trên khoảng 1;2 . Câu 9: [2D1-1.2-1] Cho hàm số y f x có bảng biến thiên như hình vẽ Trang 9 SP ĐỢT 4 TỔ 16 ĐỀ ÔN TẬP HKI LỚP 12 THPT YÊN HÒA 2020-2021 Mệnh đề nào sau đây đúng? A. Hàm số đồng biến trên khoảng 1;3 . B. Hàm số đồng biến trên khoảng ;2 . C. Hàm số nghịch biến trên khoảng 2;1 . D. Hàm số nghịch biến trên khoảng 1;2 . Lời giải Fb tác giả: Nguyễn Văn Dũng Từ bảng biến thiên ta thấy f x 0,x 1; . Nên hàm số y f x nghịch biến trên khoảng 1; . Do đó hàm số y f x nghịch biến trên khoảng 1;2 . Câu 10: [2D1-1.2-1] Cho hàm số y f x xác định trên ¡ \ 2 và có bảng biến thiên như hình vẽ. Mệnh đề nào sau đây là đúng? A. f x nghịch biến trên từng khoảng ;2 và 2; . B. f x đồng biến trên từng khoảng ;2 và 2; . C. f x đồng biến trên ¡ . D. f x nghịch biến trên ¡ . Lời giải FB tác giả: Thầy tý Dựa vào bảng biến thiên hàm số f x nghịch biến trên từng khoảng ;2 và 2; . Câu 11: [2D1-1.2-1] Cho hàm số y f (x) có đồ thị như hình vẽ. Hàm số đã cho đồng biến trên khoảng nào sau đây? Trang 10
File đính kèm:
de_cuong_on_tap_hoc_ki_i_mon_toan_lop_12_nam_hoc_2020_2021_t.docx