Chuyên đề biến đổi căn thức

/ Chứng minh : 

Giá trị của biểu thức :  chia hết cho 5

2/Tính giá trị của các biểu thức sau :



3/Tính )





4/Cho a,b,c > 0 và . Tính : P = 

Figure 1



5/ Thu gọn các biểu thức:

          a)                          

b) 

          c)



6/Cho biểu thức:  
          a. Rút gọn biểu thức A

          b.Tìm những giá trị nguyên của x để biểu thức A có giá trị nguyên.

c.Chứng minh rằng :

Số x = +  là nghiệm của phương trình :   x4 - 16x2   + 32 = 0

7/ Tính : A = 

8/ Cho  . Tính giá trị của biểu thức B = a3 – 6a - 2049

9/Tìm a,b thoả mãn đẳng thức :   

10/ Cho a,b thoả mãn hệ  .Tính giá trị của biểu thức : Q = a3 + b3
doc 33 trang Bảo Giang 24781
Bạn đang xem 20 trang mẫu của tài liệu "Chuyên đề biến đổi căn thức", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.

Tóm tắt nội dung tài liệu: Chuyên đề biến đổi căn thức

Chuyên đề biến đổi căn thức
Nhóm 2: căn thức
Rút gọn biểu thức:
.
.
Rút gọn biểu thức: , (n dấu căn).
Tính tổng: .
CMR: .
Cho a, b > 0 và b < a2. CMR:
Rút gọn biểu thức:
.
.
 + .
.
.
Tính giá trị các biểu thức:
.
.
.
Tính tổng:
S = .
P = .
Giải các phương trình:
.
.
So sánh 2 số: và .
Cho . CMR:
.
Cho a > b > 0. CMR:
.
.
Hãy đề xuất các bài tập mới bằng cách khai thác các bài tập trên.
Chuyên đề căn thức bậc hai bậc ba
1/ Chứng minh : 
Giá trị của biểu thức : chia hết cho 5
2/Tính giá trị của các biểu thức sau :
3/Tính )
4/Cho a,b,c > 0 và . Tính : P = 
Figure 1
5/ Thu gọn các biểu thức:
	a)	
b) 
	c) 
6/Cho biểu thức: 
	a. Rút gọn biểu thức A
 	b.Tìm những giá trị nguyên của x để biểu thức A có giá trị nguyên.
c.Chứng minh rằng : 
Số x = + là nghiệm của phương trình : x4 - 16x2 + 32 = 0
7/ Tính : A = 
8/ Cho . Tính giá trị của biểu thức B = a3 – 6a - 2049
9/Tìm a,b thoả mãn đẳng thức : 
10/ Cho a,b thoả mãn hệ .Tính giá trị của biểu thức : Q = a3 + ... P(x).P(-x) < 0.
Bài 18: Cho biểu thức: .
Rút gọn P.	2/Tìm x để 
Bài 19: Cho với x # 0, x # 1.
Rút gọn M. 	2/ Chứng minh rằng với với x # 0, x # 1, ta có M < 1/3.
Bài 20: Cho biểu thức: .
Rút gọn P.	2/Tìm x để P = 9/2.
Bài 21: Cho biểu thức: .
Rút gọn P.	2/ Tìm a để .
Bài 22: Cho biểu thức: 
Tìm điều kiện của x để P có nghĩa và rút gọn P.
Tìm các giá trị nguyên của x để biểu thức nhận giá trị nguyên.
Bài 23: Cho biểu thức: .
Rút gọn A.
Tìm x để A < 1.	3/ Tính giá trị của A với .
Bài 24: Cho biểu thức: 
Rút gọn P.	2/ Cho , tìm giá trị lớn nhất của P.
Bài 25: Cho biểu thức: .
Tìm điều kiện của x để P có nghĩa và hãy rút gọn P.
Tìm các số nguyên x để giá trị của cũng là số nguyên.
Bài 26: Cho biểu thức: với x # 1.
Rút gọn P(x).	2/ Giải phương trình P(x) = 1.
Bài 27: Xét biểu thức: với x # 0.
Rút gọn P.	2/ Tìm giá trị lớn nhất và giá trị nhỏ nhất của P.
Bài 28: Cho biểu thức: 
Rút gọn P. 2/ Tìm các giá trị nguyên của x để P < 0.
Với giá trị nào của x thì biểu thức 1/P đạt giá trị nhỏ nhất.
Bài 29: Cho 
Rút gọn A	2/ Tìm x thỏa mãn .
Bài 30: Cho biểu thức
Rút gọn P	2/ Tìm giá trị trị nhỏ nhất của P
Tìm x để biểu thức nhận giỏ trị là số nguyên trên và là một số nguyên? Hãy chỉ ra toàn bộ các số đó.
Đề 1:
Câu 1 :
Chứng minh : số A = là một số nguyên.
Hướng dẫn câu 1: A = 
Câu 2 :Cho a,b,c là các số thực không âm.
Chứng minh : a+ b + c = 
Hướng dẫn câu 2 
Câu 3 : Cho x , y , z là các số thực dương thỏa mãn 
Chứng minh : 
Hướng dẫn câu 3: 
 suy ra 
Tương tự : z + x - y = ; x + y - z = 
Do đó ta có : 
Câu 4:
Tìm tất cả các giá trị x,y,z thỏa mãn điều kiện :
Hướng dẫn câu 4:
điều kiện x,y,z ³ 0 và x +z ³y
Vậy x = y ³0 hoặc y = z ³0
Câu 5 :Cho biết (1)
Hãy tính : E = x+ y.
Hướng dẫn câu 5:
Nhân hai vế (1) cho ta có : -3()
Nhân hai vế (1) cho ta có -3()
Cộng 2 và 3 ta có : x+y = 0.
Câu 6 : Cho x và y thỏa (1)
Chứng minh x + y = 1.
Hướng dẫn câu 6:
Cách 1: làm giống câu 5.
Cách 2: 1 suy ra 
Suy ra 
Câu 7: Ch... A = (3x3 +8x2 +2 )2006 với x = 
Câu 12 ( bài 11/tr120 cđbđtvà cực trị)
Cho a,b,c ³ 0
Chứng minh rằng: a2 + b2 + c2 ³ Đề 3:
Câu 1 :
Cho A = 	;So sánh A và B.
Hướng dẫn : Ta có : 
Do đó A > B
Câu 2:Rút gọn biểu thức :
.
Câu 3 ( Đề thi vào lớp 10 chuyên năm 2001-2002 Hà Tây)
Tìm các giá trị của x,y,z thỏa mãn phương trình:
Hướng dẫn:Đk : x³ 2000 ;y³ 2001 ; z ³ 2002
Phương trình đã cho tương đương 
Do đó ta có : x=2001; y = 2002 ; z= 2003
Câu 4 : ( Đề thi vào lớp 10 chuyên vòng 1 năm 2002-2003 Hà Nội)
Chứng minh đẳng thức :
Hướng dẫn:
Ta có VT = 
CÂU 5: ( Đề thi vào lớp 10 chuyên vòng 2 năm 2002-2003 Hà Nội)
Chứng minh rằng số : x0 là một nghiệm của phưong trình: x4 - 16x2 + 32 = 0
Hướng dẫn: Ta có
: 
Vậy x0 là nghiệm của phương trình x4 - 16x2 + 32 = 0
Câu 6: ( Đề thi vào lớp 10 chuyên vòng 2 năm 2002-2003 Hà Tây)
Tìm số n nguyên dương thỏa mãn:
Hướng dẫn:
Đặt 
Phương trình đã cho tương đương a+ Û a2 -6a + 1 =0 có nghiệm a1 = 3-2
- Với a1 = 3-2suy ra (loại).
- Với a1 = 3+2suy ra
Vậy n = 2
Câu 7:
a) Với ba số a,b,c khác 0 và a+ b+c =0 thì 
b) Rút gọn : 
Câu 8 :Tìm giá trị lớn nhất của biểu thức :
A = 
Hướng dẫn:
Đk x ³ 2002
Đặt a = ; và b = Ta có a2= x -2001 ị x +2= a2 + 2003 
và x-2002 = b2 ; x = b2 + 2002.
A = 
Ap dụng bất đẳng thức côsi ta có : 
Do đó A Ê ; Đẳng thức xảy ra khi 
CÂU 9: ( Đề thi vào lớp 10 chuyên năm 2003-2004 Đại Học Vinh)
	a) Tính giá trị biểu thức : P = x3 + y 3 - 3(x+y) + 2004.
	Trong đó .
	b) Rút gọn :
	P = 
Hướng dẫn :
Do đó : P = x3 + y 3 - 3(x+y) + 2004= x3-3x + y 3-3y +2004=6+34+2004=2044.
Câu 10:
Tìm số nguyên n thỏa mãn đẳng thức :
Hướng dẫn:
Gọi x = 
Ta có x3 -3x(-2) -2n =0 suy ra n = (83 -2.8.(-2)):2 =280
Câu 11:Tìm tất cả các cặp số tự nhiên x, y sao cho : 
Hướng dẫn : ta có vì là số vô tỉ nên là những căn thức đồng dạng chứa
Do đó đặt với a, b ẻ N ; Ta có : a+b=3.
Vậy 
Các cặp số x, y cần tìm là : (221;884);(884;221);(0;1989);(1989;0)
Đề 4
Câu 1
Với x, y là các số dương

File đính kèm:

  • docchuyen_de_bien_doi_can_thuc.doc