Các chuyên đề bồi dưỡng học sinh giỏi môn Toán học Lớp 7
Chuyên đề:
TỈ LỆ THỨC-TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU
A. CƠ SỞ LÍ THUYẾT
I. TỈ LỆ THỨC
1. Định nghĩa:
Tỉ lệ thức là một đẳng thức của hai tỉ số (hoặc a : b = c : d).
Các số a, b, c, d được gọi là các số hạng của tỉ lệ thức; a và d là các số hạng ngoài hay ngoại tỉ, b và c là các số hạng trong hay trung tỉ.
2. Tính chất:
Tính chất 1: Nếu thì
Tính chất 2: Nếu và a, b, c, d thì ta có các tỉ lệ thức sau:
, , ,
Nhận xét: Từ một trong năm đẳng thức trên ta có thể suy ra các đẳng thức còn lại.
II. TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU
-Tính chất: Từ suy ra:
-Tính chất trên còn mở rộng cho dãy tỉ số bằng nhau:
suy ra:
(giả thiết các tỉ số trên đều có nghĩa).
* Chú ý: Khi có dãy tỉ số ta nói các số a, b, c tỉ lệ với các số 2, 3, 5.
Ta cũng viết a : b : c = 2 : 3 : 5
Tóm tắt nội dung tài liệu: Các chuyên đề bồi dưỡng học sinh giỏi môn Toán học Lớp 7
DÃY CÁC SỐ VIẾT THEO QUY LUẬT Bài 1: Tìm số hạng thứ n của các dãy số sau: 3, 8, 15, 24, 35, ... 3, 24, 63, 120, 195, ... 1, 3, 6, 10, 15, ... 2, 5, 10, 17, 26, ... 6, 14, 24, 36, 50, ... 4, 28, 70, 130, 208, ... 2, 5, 9, 14, 20, ... 3, 6, 10, 15, 21, ... 2, 8, 20, 40, 70, ... Hướng dẫn: n(n+2) (3n-2)3n 1+n2 n(n+5) (3n-2)(3n+1) Bài 2: Tính: a,A = 1+2+3++(n-1)+n b,A = 1.2+2.3+3.4+...+99.100 Hướng dẫn: a,A = 1+2+3++(n-1)+n A = n (n+1):2 b,3A = 1.2.3+2.3(4-1)+3.4.(5-2)+...+99.100.(101-98) 3A = 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100 3A = 99.100.101 A = 333300 Tổng quát: A = 1.2+2.3+3.4+. + (n - 1) n A = (n-1)n(n+1): 3 Bài 3: Tính: A = 1.3+2.4+3.5+...+99.101 Hướng dẫn: A = 1(2+1)+2(3+1)+3(4+1)+...+99(100+1) A = 1.2+1+2.3+2+3.4+3+...+99.100+99 A = (1.2+2.3+3.4+...+99.100)+(1+2+3+...+99) A = 333300 + 4950 = 338250 Tổng quát: A = 1.3+2.4+3.5+...+(n-1)(n+1) A= (n-1)n(n+1):3 + n(n-1):2 A= (n-1)n(2n+1):6 Bài 4: Tính: A = 1...+32+52+...+972+992)+2(1+3+5+...+97+99) Bài 16: Tính: A = 2.4+4.6+6.8+...+98.100+100.102 Hướng dẫn: A = 2(2+2)+4(4+2)+6(6+2)+...+98(98+2)+100(100+2) A = (22+42+62+...+982+1002)+4(1+2+3+...+49+50) Bài 17: Tính: A = 13+23+33+...+993+1003 Hướng dẫn: A = 12(1+0)+22(1+1)+32(2+1)+...+992(98+1)+1002(99+1) A = (1.22+2.32+3.42+...+98.992+99.1002)+(12+22+32+...+992+1002) A = [1.2(3-1)+2.3(4-1)+3.4(5-1)+...+98.99(100-1)] +(12+22+32+...+992+1002) A = 1.2.3-1.2+2.3.4-2.3+3.4.5-3.4+...+98.99.100- 98.99+(12+22+32+...+992+1002) A = (1.2.3+2.3.4+3.4.5+...+98.99.100)-(1.2+2.3+3.4+...+98.99) (12+22+32+...+992+1002) Bài 18: Tính: A = 23+43+63+...+983+1003 Hướng dẫn: Bài 19: Tính: A = 13+33+53+...+973+993 Hướng dẫn: Bài 20: Tính: A = 13-23+33-43+...+993-1003 Hướng dẫn: Chuyên đề: TỈ LỆ THỨC-TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU A. CƠ SỞ LÍ THUYẾT I. TỈ LỆ THỨC 1. Định nghĩa: Tỉ lệ thức là một đẳng thức của hai tỉ số (hoặc a : b = c : d). Các số a, b, c, d được gọi là các số hạng của tỉ lệ thức; a và d là các số hạng ngoài hay ngoại tỉ, b và c là các số hạng trong hay trung tỉ. 2. Tính chất: Tính chất 1: Nếu thì Tính chất 2: Nếu và a, b, c, d thì ta có các tỉ lệ thức sau: , , , Nhận xét: Từ một trong năm đẳng thức trên ta có thể suy ra các đẳng thức còn lại. II. TÍNH CHẤT CỦA DÃY TỈ SỐ BẰNG NHAU -Tính chất: Từ suy ra: -Tính chất trên còn mở rộng cho dãy tỉ số bằng nhau: suy ra: (giả thiết các tỉ số trên đều có nghĩa). * Chú ý: Khi có dãy tỉ số ta nói các số a, b, c tỉ lệ với các số 2, 3, 5. Ta cũng viết a : b : c = 2 : 3 : 5 B. CÁC DẠNG TOÁN VÀ PHƯƠNG PHÁP GIẢI DẠNG I: TÌM GIÁ TRỊ CỦA BIẾN TRONG CÁC TỈ LỆ THỨC. Ví dụ 1: Tìm hai số x và y biết và Giải: Cách 1: (Đặt ẩn phụ) Đặt , suy ra: , Theo giả thiết: Do đó: KL: Cách 2: (sử dụng tính chất của dãy tỉ số bằng nhau): Áp dụng tính chất của dãy tỉ số bằng nhau ta có: Do đó: KL: Cách 3: (phương pháp thế) Từ giả thiết mà Do đó: KL: Ví dụ 2: Tìm x, y, z biết: ...;8. Biết rằng số học sinh khối 6 nhiều hơn số học sinh khối 9 là 8 em. Tính số học sinh của trường đó? Bài 14: Chứng minh rằng nếu có các số a, b, c, d thỏa mãn đẳng thức: thì chúng lập thành một tỉ lệ thức. Giải: => ab(ab-2cd)+c2d2=0 (Vì ab(ab-2)+2(ab+1)=a2b2+1>0 với mọi a,b) =>a2b2-2abcd+ c2d2=0 =>(ab-cd)2=0 =>ab=cd =>đpcm DẠNG II: CHỨNG MINH TỈ LỆ THỨC Để chứng minh tỉ lệ thức: ta thường dùng một số phương pháp sau: Phương pháp 1: Chứng tỏ rằng A. D = B.C Phương pháp 2: Chứng tỏ rằng hai tỉ số và có cùng giá trị. Phương pháp 3: Sử dụng tính chất của tỉ lệ thức. Một số kiến thức cần chú ý: +) +) Sau đây là một số ví dụ minh họa: ( giả thiết các tỉ số đều có nghĩa) Ví dụ 1: Cho tỉ lệ thức .Chứng minh rằng: Giải: Cách 1: (PP1) Ta có: (1) (2) Từ giả thiết: (3) Từ (1), (2), (3) suy ra: (đpcm) Cách 2: (PP2) Đặt , suy ra Ta có: (1) (2) Từ (1) và (2) suy ra: (đpcm) Cách 3: (PP3) Từ giả thiết: Áp dụng tính chất của dãy tỉ số bằng nhau ta có: (đpcm) Hỏi: Đảo lại có đúng không ? Ví dụ 2: Cho tỉ lệ thức . Chứng minh rằng: Giải: Cách 1: Từ giả thiết: (1) Ta có: (2) (3) Từ (1), (2), (3) suy ra: (đpcm) Cách 2: Đặt , suy ra Ta có: (1) (2) Từ (1) và (2) suy ra: (đpcm) Cách 3: Từ giả thiết: (đpcm) BÀI TẬP VẬN DỤNG: Bài 1: Cho tỉ lệ thức: . Chứng minh rằng ta có các tỉ lệ thức sau: (với giả thiết các tỉ số đều có nghĩa). 1) 2) 3) 4) 5) 6) 7) 8) Bài 2: Cho tỉ lệ thức: . Chứng minh rằng ta có các tỉ lệ thức sau: (với giả thiết các tỉ số đều có nghĩa). a) b) c) d) e) f) g) h) i) Bài 3: Cho . Chứng minh rằng: Bài 4: Cho . Chứng minh rằng: Bài 5: Cho Chứng minh rằng: Bài 6: Cho dãy tỉ số bằng nhau: CMR: Ta có đẳng thức: Bài 7: Cho và Chứng minh rằng: Bài 8: Cho Chứng minh rằng: Bài 9: Chứng minh rằng nếu : thì Bài 10: Cho và Chứng minh rằng: Bài 11: CMR: Nếu thì . Đảo lại có đúng không? Bài 12: Chứng minh rằng nếu : thì Bài 13: Cho . CMR: Bài 14. Cho
File đính kèm:
- cac_chuyen_de_boi_duong_hoc_sinh_gioi_mon_toan_hoc_lop_7.doc